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ABSTRACT: In this article, we present an efficient approach for

image retrieval based on the textural information of an image, such as
orientation, directionality, and regularity. For this purpose, we apply

the nonlinear modified discrete Radon transform to estimate these

visual contents. We then utilize texture orientation to construct the
rotated Gabor transform for extraction of the rotation-invariant texture

feature. The rotation-invariant texture feature, directionality, and regu-

larity are the main features used in the proposed approach for similar-

ity assessment. Experimental results on a large number of texture
and aerial images from standard databases show that the proposed

schemes for feature extraction and image retrieval significantly out-

perform previous works, including methods based on the MPEG-7

texture descriptors. VVC 2008 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 17, 295–302, 2007; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/ima.20120
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I. INTRODUCTION

With the advancement of multimedia technologies, a huge number

of multimedia information, such as images and videos are available

worldwide, and efficient multimedia retrieval systems are an inevi-

table need for many applications. In this article, we address the

problem of content-based image retrieval (CBIR) that has been an

active and fast advancing research area for more than one decade.

Despite remarkable progress in both theoretical research and system

development, there are still many challenging problems in this area

that continue to attract researchers from multiple disciplines

(Smeulders et al., 2000).

A CBIR system utilizes visual contents to search images from

digital image databases based on a user’s query (e.g. an example

image). Visual contents (or features) of an image, such as color,

shape, texture, and spatial layout are used to represent and index an

image. Among them, texture is one of the most important ones, due

to its presence in most real and synthetic world images, which

makes it under high attention not only for CBIR but also for many

other applications in computer vision, medical imaging, remote

sensing, and so on.

There are a variety of approaches for texture analysis, however

in the majority of existing works; it is assumed that all images are

acquired from the same orientation. This assumption is not realistic

in practical applications, where images may be taken with different

rotation, scale, etc. There are numerous methods proposed for

addressing the problem of the rotation invariant texture analysis

(Zhang and Tan, 2002). Among them, some use rotation invariant

models to solve this problem (Haley and Manjunath, 1999; Pun and

Lee, 2003), though, a majority attempt to estimate the directional

information in an image and use it with other tools, such as wave-

lets to perform rotation-invariant analysis (Jafari-Khouzani and Sol-

tanianzadeh, 2005; Hejazi and Ho, 2006).

However, most approaches proposed for texture analysis are not

applicable for actual image retrieval. First, many approaches are

dataset-dependent and need to be trained for each dataset individu-

ally before applying for image retrieval (Haley and Manjunath,

1999; Jafari-Khouzani and Soltanianzadeh, 2005). Second, the per-

formance of most approaches is degraded when the level of direc-

tionality and/or regularity is decreased (Manjunath et al., 2000; Lee

and Chen, 2005). Last but not least, although the response time is a

key factor in most image retrieval applications, the invariant feature

extraction is a time-consuming process in most existing texture

analysis methods.

Here, we apply the second modified Radon transform (Hejazi

et al., 2006), which is referred to as the nonlinear modified discrete

Radon transform (NLMDRT) in this article, and is a fast and effi-

cient transform for analysis of directional information, to estimate

the texture orientation, directionality, and regularity. We also utilize

the rotated Gabor transform (Hejazi and Ho, 2007) to extract the

rotation-invariant texture feature. Using these features, we finally

propose an efficient mechanism for CBIR and examine it through

some applications.

The rest of the article is organized as follows. In Section II, we

briefly introduce NLMDRT, and present schemes for extraction of

textural information from an image using NLMDRT. Then, in Sec-

tion III, we propose our approach for image retrieval. Section IV

provides some applications of the proposed mechanism and presents

experimental results. Finally, conclusions are given in Section V.
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II. EXTRACTION OF TEXTURAL INFORMATION

A. NLMDRT. NLMDRT is the second modified version of the

conventional discrete Radon transform, a fast and efficient tool for

rotation estimation in an image that we proposed in a previous pa-

per (Hejazi et al., 2006). To define NLMDRT, we start with the Ra-

don transform, which is the projection of the image intensity along

a radial line oriented at a specific angle. The continuous Radon

transform of a 2D image is defined as

Rðq; uÞ ¼
Z 1

�1
f ðq cos u� s sin u; q sin uþ s cos uÞds; ð1Þ

where q is the smallest distance from the origin, and y is its angle

with the x-axis. The discrete Radon transform of a 2D digital image

g(m,n) of sizeM 3 N can then be approximated from Eq. (1) as

Rðqr; utÞ � Ds �
XSq;u�1

k¼0

gðx0k; y0kÞ; ð2Þ

where

x0k ¼ ½qr � cos ut � sk � sin ut � xmin�;
y0k ¼ ½qr � sin ut þ sk � cos ut � ymin�;

ð3Þ

and [�] represents the rounding operation. Note that in Eqs. (2) and

(3), the discrete variables are provided by proper sampling of con-

tinuous variables in Eq. (1) (Hejazi et al., 2006).

We define the set Fr,t as

Ur;t ¼ fgðx0i; y0iÞ: q ¼ qr; u ¼ ut; i ¼ 0; 1; . . . ; Sq;u � 1g; ð4Þ

and Ct as a set of successive concatenations of the sets

Ur;tjr ¼ 0; 1; . . . ;Pu � 1 and y 5 yt}:

Wt ¼ ConcatðUr;tÞ; r ¼ 0; 1; . . . ;Pu � 1 and u ¼ ut: ð5Þ

NLMDRT is then defined as

RMMðkj; utÞ � Ds � Meanðwt
jÞ; j ¼ 0; 1; . . . ;M � 1; ð6Þ

where

kj ¼ kminþ j; j ¼ 0; 1; . . . ;M � 1; and kmin ¼ �ðM � 1Þ=2:
ð7Þ

The good performance of NLMDRT in direction estimation moti-

vates us to utilize it for the extraction of other textural information

from an image. In the following subsections, we present schemes

for the estimation of orientation, directionality, and regularity.

B. Orientation Estimation. There are a variety of techniques in

the literature to estimate orientation, including methods using image

gradients and signal autocorrelation structure (Mester, 2000), the

angular distribution of signal power in the Fourier domain (Bigun

et al., 1991; Chandra, 1998), directional histograms (Manjunath

et al., 2000), and the discrete Radon transform (Jafari-Khouzani

and Soltanianzadeh, 2005; Hejazi and Ho, 2006).

Here, we use NLMDRT whose performance is significantly bet-

ter than the conventional discrete Radon transform in direction esti-

mation (Hejazi et al., 2006), to achieve this goal. For this purpose,

we first calculate the variance array of an image as

SRMM
ðuÞ ¼ Varut2½0;180Þ½RMMðqr; utÞ�: ð8Þ

where RMM is NLMDRT of the image as defined in Eq. (6) and is

calculated for all directions with yt from 0 to 1798 with step size 18.

Defining the dominant direction Da as the direction with more

straight lines (and in general more directionality), we expect the

variance array to have a global maximum at the direction perpen-

dicular to Da. Thus, Da is defined as

Da ¼ argmaxutðSRMM
Þ � 90�: ð9Þ

This point can be easily verified for the multidirectional anisotropic

texture in Figure 1. As shown, there is a peak for each main direc-

tion of the image. Using this idea, we can even define some princi-

pal direction(s) for isotropic images (Fig. 2), because in the real

world pure isotropicity rarely occurs.

Additionally, because images of a scene are supposed to take

from different orientations, we may apply NLMDRT to a disk shape

area from the middle of images to increase the accuracy of the

estimation.

C. Directionality Estimation. Although the texture directional-

ity is sometimes referred to the dominant direction of a texture

(Manjunath et al., 2000; Lee and Chen, 2005), here we use a more

general definition of directionality that is applied to determine the

level of anisotropicity (or isotropicity) in an image (Tamura et al.,

1978).

We first examine the examples of Figures 1 and 2 to see the

effect of directionality in the variance array of an image. For the

multidirectional texture of Figure 1, we can see that principal direc-

tions are well separated from other peaks in the variance array.

However, for the isotropic texture, the variance array has a noisy-

shape figure, and there are many peaks with close values to the

Figure 1. Variance arrays of an anisotropic image for two different

orientations. (a) original image, (b) variance array of the original
image, (c) a 308-rotated version of the image, and (d) variance array

of the rotated image. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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maximum peak (Fig. 2). We now generalize this result through

some more examples.

Figure 3 shows three different scales of another anisotropic

image and their variance arrays. As it can be easily seen in Figure 3,

all variance arrays have a clear dominant direction (or peak) around

1008 and their general shapes are almost the same. However, the

peak widths of the dominant directions are different for each figure.

Here, a peak width is defined as the distance between each side of a

peak on its corresponding DC-bias line (i.e., Mean(SRMM
)). From

Figure 3, it can be easily seen that coarser images have greater peak

widths.

We now examine the same problem in an isotropic image. Fig-

ure 4 shows three different scales of an isotropic image and their

variance arrays. As shown in Figure 4, the shapes of variance arrays

are no longer similar; however, all have noisy-shape figures, espe-

cially when the level of coarseness is decreased. Consequently,

there are many peaks above DC-bias lines with close values to each

other.

Furthering the analysis, we can conclude that in pure anisotro-

picity (directionality), there is only one peak, and in pure isotropic-

ity (nondirectionality), there are no peaks in the variance array. To

this end, we define the directionality diso as

diso ¼
1;
1;
ðNp � 1Þ=Niso;

8<
:

Np ¼ 0 or Np > Niso;

Np ¼ 1 and bD > biso;

otherwise;

ð10Þ

where Np is the number of peaks in the variance array above its

DC-bias line, bD is the peak width of the dominant direction, and

Niso and biso are the two thresholds, which control the level of iso-

tropicity. In this work, we set Niso and biso to 8 and 908,
respectively.

Additionally, because there is potential for overestimation of the

number of peaks, it is also recommended that the variance array

passes through a smoother to remove the undesired noisy-type

peaks. From Eq. (10), it can be easily seen that small values of diso
show anisotropic dominancy, and larger values emphasize on iso-

tropicity. For extreme cases, i.e. anisotropic textures with one domi-

nant direction and pure isotropic textures, diso is 0 and 1,

respectively.

Figure 3. Variance arrays of an anisotropic image for different
scales. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]

Figure 4. Variance arrays of an isotropic image for different scales.

[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 2. Variance arrays of an isotropic image for two different ori-

entations. (a) original image, (b) variance array of the original image,
(c) a 308-rotated version of the image, and (d) variance array of the

rotated image. [Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.]

Figure 5. Estimating regularity. (a) image I (and subimage I1) of size

128 3 128, (b) subimage I2 of size 86 3 86, (c) subimage I3 of size

43 3 43, (d) variance arrays of three subimages. [Color figure can
be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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D. Regularity Estimation. Another important feature that is

used to characterize an image is the texture regularity; regularity

determines the level of structuredness in an image, usually esti-

mated by finding periodic patterns in the image. There are some

methods in literature for estimation of the regularity (Manjunath

et al., 2000; Lee and Chen, 2005); however, these methods are very

complex and not significantly efficient, especially when the level of

anisotropicity does not attain a required threshold.

In this work, we find this periodicity by comparing variance

arrays of blocks of the image. These variance arrays are expected to

be quite similar for a complete regular image. Here, we divide the

image into three overlapped blocks, where the first block is the

image itself with the size M 3 M, and the two other blocks are sub-

images with sizes (2M/3 3 2M/3) and (M/2 3 M/2) that are

extracted from the middle of the image.

The criterion for similarity measurement is based on the num-

bers and positions of the peaks in their variance arrays. Therefore,

let Ni
p be the number of peaks above the DC-bias line of the var-

iance array of the ith subimage, and Pi
posðjÞ; j ¼ 1; . . . ;Ni

p be posi-

tions of these peaks. We can then compare each pair of variance

arrays; i.e. the variance arrays of the kth and lth subimages, and cal-

culate their similarity SIM(k,l) based on the number and positions

of peaks in Pk
pos that have proper matches in Pl

pos.

We say that a peak q in Pl
pos is a proper match of a peak p in Pk

pos

if first, q has the minimum position difference with p as compared

with other peaks in Pl
pos, and second, this difference is less than a

threshold Tr. Let us assume that m is the number of peaks in Pk
pos

that has proper matches in Pl
pos, P

k
mat, and Pl

mat are subsets of Pk
pos

and Pl
pos whose elements are positions of these m peaks in Pl

pos and

their proper matches in Pl
pos. We can then calculate SIM(k,l) as

SIM ðk; lÞ ¼ 2m

ðNk
p þ Nl

pÞ

" #
ð1� PdiffÞ; ð11Þ

where [�] represents the rounding operation, and

Pdif ¼ jPk
mat � Pl

matj=Tr; if Pdif > 1; then set Pdif ¼ 1: ð12Þ

Having compared all possible pairs of variance arrays, we calculate

regularity rt as a weighted average of these similarity values, with a

bigger weight for subimages with greater sizes:

rt ¼ 0:5SIMð1; 2Þ þ 0:3SIMð1; 3Þ þ 0:2SIMð2; 3Þ: ð13Þ

where rt has a value between 0 and 1 that show irregularity and

complete regularity, respectively.

We examine the procedure through the example of Figure 5. A

near regular image is shown in Figure 5a and its subimages are in

Figures 5b and 5c. Let us refer to these images as I1, I2, and I3,
whose variance arrays have peaks at positions {44, 119, 125, 172},

{43, 119, 124, 173}, and {40, 121, 175}, as shown in Figure 5d.

We summarize the process of regularity estimation in Table I. Note

that in calculation, we set TR to 308. Using Eq. (13) and results of

Table I, we can estimate rt as 0.9196. It means that the image of

Figure 5a is a near-regular image as expected.

III. TEXTURE-BASED IMAGE RETRIEVAL

Similar to most CBIR systems, we need to index images by extract-

ing their features in an offline process. We then submit a query

image and find similar images to that query based on a matching

criterion. We first start with feature extraction. Figure 6 represents

the block diagram of the proposed scheme for this step. As shown,

the system extracts three different features for an image; rotation-

invariant texture feature finv, directionality diso, and regularity rt.
We have already presented techniques for the estimation of diso

and rt in Section II. Note that because all proposed schemes utilize

the variance array of NLMDRT of the input image I for their esti-
mation, this part is performed only once, results to the significant

reduction of the total computational time.

The other feature is the rotation-invariant texture feature finv. As
it can be seen in Figure 6, after estimating the dominant direction

Da (Section II.B), we use the estimated direction to construct finv.
There are two different ways to perform this task. One way is to

rotate the image based on its dominant direction and then calculate

Figure 6. Block diagram of the proposed scheme for feature
extraction. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Table I. Calculation of similarity values in the example of Figure 5.

Subimages I1 and I2 Subimages I1 and I3 Subimages I2 and I3

N1
p ¼ 4, N2

p ¼ 4, m5 4 N1
p ¼ 4, N3

p ¼ 4, m5 3 N2
p ¼ 4, N3

p ¼ 3, m5 3

P1
mat ¼ f44; 119; 125; 172g Pg

mat ¼ f44; 119; 172g Pg1
mat ¼ f43; 119; 173g

P2
mat ¼ f43; 119; 124; 173g Pg2

mat ¼ f40; 121; 175g Pg2
mat ¼ f40; 121; 175g

Pdiff 5 0.0083 Pdiff 5 0.0111 Pdiff 5 0.0111

SIM(1, 2)5 0.9917 SIM(1, 3)5 0.8476 SIM(2, 3)5 0.8476
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the wavelet transform (Jafari-Khouzani and Soltanianzadeh, 2005).

However, this method is not appropriate in general, because we

may lose relatively large amounts of data through rotation that con-

sequently decreases the accuracy of the analysis.

Another method, which we use in this work, is based on the defi-

nition of the Gabor transform that is a directional wavelet transform

(Haley and Manjunath, 1999; Hejazi and Ho, 2006). In this method,

we apply the dominant direction in generation of rotated Gabor fil-

ters to extract finv. For this purpose, filters are initially oriented

from Da8 rather than 08 (Hejazi and Ho, 2007).

Using the proposed scheme, the system can now compare fea-

tures of the query with features of images in the collection based on

some matching criterions. Because three features are used in this

work, three matching scores need to be computed. A weighted aver-

age of the matching scores is then calculated to get a final score for

each image. Finally, we rank images based on these final scores and

top-ranked images are displayed to the user as the result of retrieval.

We now explain the process of similarity assessment in detail.

The first feature is the rotation-invariant texture feature. To com-

pare two rotation-invariant texture features, we use the Bray–Curtis

distance metric, defined as

dBðI1; I2Þ ¼

P
i

f1i � f2ijjP
i

f1i þ f2i
; ð14Þ

where f1 and f2 are the features of images I1 and I2.

If we consider a score of 0 for a no-matching scenario and a

score of 1 for an exact-matching scenario, the score Sf between a

query image Iq and an image IDB is calculated as

Sf ¼ 1� dBðIq; IDBÞ; ð15Þ

where f qinv and PDB
inv are rotation-invariant texture features Iq and

IDB, respectively.

For the directionality diso and the regularity rt, scores Sd and Sr
between Iq and IDB are calculated as

Sd ¼ 1� jdqiso � dDBiso j; ð16Þ

Sr ¼ 1� jQðrqt Þ � QðrDBt Þj; ð17Þ

respectively, where diso and rt are texture directionality and texture

regularity features as defined in Eqs. (10) and (13), and Q(rt) is the
quantized value of rt, defined as

QðrtÞ ¼
½8rt�
8

; ð18Þ

The final relevance score SFIN between the images Iq and IDB can be

then calculated as

SFIN ¼ wf � Sf þ wd � Sd þ wr � Sr; wf þ wd þ wr ¼ 1:

Computing SFIN for all images in the collection, we select

images with the highest scores as top-ranked images. In Section

IV.C, we examine an alternative scheme for finding the top-ranked

images based on Sf, Sd, and Sr.

IV. EXPERIMENTAL RESULTS

For the evaluation of the proposed schemes, we performed several

experiments on a set of images from the VisTex database (VisTex,

2002), including texture images from the Brodatz album (Brodatz,

1966), as well as a variety of nontraditional textures. We also per-

formed experiments on a collection of aerial images that have al-

ready been used for the evaluation of the homogeneous texture

descriptor in MPEG-7 (Manjunath et al., 2003). Note that all experi-

ments performed on an HP workstation computer with a 3.06 GHz

Intel CPU and 2 GB RAM.

A. Orientation Estimation. In the first experiment, we evaluated

the proposed scheme in Section II.B for orientation estimation.

Here, we used 9792 texture images of size 128 3 128. For generat-

ing the dataset, we utilized 144 images of size 512 3 512 from the

Vistex database with different textural classes, such as Barks,

Clouds, Tiles, and Paintings, and so forth (VisTex, 2002).

Each 512 3 512 image was then divided into four 256 3 256

nonoverlapping blocks, and one 128 3 128 subimage (subclass)

was extracted from the middle of each block. To create rotated ver-

sions of these subimages, each 256 3 256 block was rotated at

angles from 10 to 1608 with a step size of 108, and then one 128 3

128 subimage was selected from the center of each rotated block.

Keeping the 576 nonrotated images as references, we estimated

the dominant direction for the remaining 9216 images. Let aR be

the rotation angle, and D0 and DaR
be the dominant directions of the

nonrotated and rotated images, respectively. We suppose that the

estimation is correct if

jaR � ðD0 � DaR
Þ � 3: ð20Þ

Results of estimation have been summarized in Table II. For com-

parison, we also represent results of some state-of-the-art works for

orientation estimation, including the proposed method in Jafari-

Khouzani and Soltanianzadeh (2005) that uses the second derivative

of the variance of the Radon transform to estimate the orientation;

the method presented in Lee and Chen (2005) for estimation of

Table III. Categorization of images based on their texture regularities.

Regularity Range Category

0.725 � rt � 1 Regular

0.475 � rt � 0.775 Near regular

0.225 � rt � 0.525 Slightly regular

0 � rt � 0.275 Irregular

Table II. Performance of orientation estimation in different schemes.

Proposed Method

Method in

Jafari-Khouzani and

Soltanianzadeh (2005)

Method in Lee and

Chen (2005)

Method in

Jalil et al. (2006)

Correct estimation rate (%) 90.8 (8369/9216) 81.0 (7461/9216) 77.3 (7124/9216) 82.4 (7593/9216)

Processing time (s) 0.22 0.51 0.72 0.21

Vol. 17, 295–302 (2007) 299



direction component in texture browsing descriptor of MPEG-7

(Manjunath et al., 2003) that applies Hough transform on the Fou-

rier spectrum to detect dominant direction; and finally a method

based on the principal component analysis (Jalil et al., 2006).

Note that in these experiments, and for the sake of uniformity,

all methods have been applied on a disk-shape area from the middle

of images instead of the whole image. As it can be easily seen from

Table II, the proposed method is not only significantly better than

the other methods in orientation estimation but also quite fast.

B. Regularity Estimation. In this experiment, we evaluated the

regularity estimation scheme proposed in Section II.D on the data-

set of the first experiment. To this end, we determined the regularity

category of each image based on the estimated regularity value rt
using Table III. Estimation is supposed to be correct when the esti-

mated category is the same as the actual category.

Table IV shows results for this experiment; the reference work

in MPEG-7 that performs a complicated scheme on the autocorrela-

tion functions of sets of projected filtered images to estimate the

regularity (Manjunath et al., 2000); and the method in Lee and

Chen (2005) that applies the radial wedge distribution on the Fou-

rier spectrum to compute the regularity. It can be seen from Table

IV that the proposed method outperforms previous schemes.

C. Retrieval Accuracy. In the third experiment, we examined

the accuracy of the proposed image retrieval mechanism with dif-

ferent weight settings for finv, diso, and rt in Eq. (19). We performed

this experiment on the dataset of the first experiment, with 9792

images for the image collection. Among them, 576 images (one

from each subclass) were used for querying. Figure 7 shows an

example of image retrieval for an irregular image with a mixed

directionality. As it can be seen in this example, all top-ranked

results are relevant answers to this query.

In this work, we evaluate the retrieval accuracy for a query

based on the precision value defined as

Precision ¼ NREL

NCAN

; ð21Þ

where NREL is the number of relevant images to the query in NCAN

retrieved images. The overall accuracy is calculated by taking the

average over precision values of all 576 queries.

In the first step, we retrieved relevant images for a query based

on their textural subclasses. In this case, the total number of rele-

vant images in the database is 17 images for each query. The overall

accuracy has been drawn in Figure 8 for this experiment, where we

only utilized the rotation invariant texture feature finv for scoring.

We can see that the overall accuracy is almost perfect in this experi-

ment, which shows that the proposed approach is well invariant to

rotation.

In the next step, relevant images have been retrieved for a query

based on their textural classes. In this case, the total number of rele-

vant images in the dataset is 68 images for each query image.

Results of this experiment are shown in Table V for different

weight settings in Eq. (19).

In this experiment, we also applied an adaptive method for scor-

ing. This method is using this point that when images Iq and IDB
have a quite different directionality or regularity feature, the image

IDB is not a proper candidate for retrieval. For instance, Iq is well

directional, however IDB is isotropic; or Iq is regular, but IDB is

irregular.

Therefore, we can set a threshold for maximum acceptable dis-

tance (or minimum acceptable score) between the directionality fea-

tures of Iq and IDB, and another threshold for distance between their

regularity features. All images with greater distances (or less

scores) than these thresholds are scored to 0. The whole procedure

can be summarized as

SFIN ¼ 0;
0:9 Sf þ 0:05 Sd þ 0:05 Sr

�
Sd < 0:5 or Sr < 0:5;

otherwise:
ð22Þ

Table IV. Performance of regularity estimation in different schemes.

Proposed Method Method in Manjunath et al. (2000) Method in Lee and Chen (2005)

Correct estimation rate (%) 83.5 (8179/9792) 79.6 (7792/9792) 75.3 (7375/9792)

Processing time (s) 0.35 3.19 0.43

Figure 7. Retrieval results for a typical query image. [Color figure
can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 8. Overall accuracy based on relevance to textural sub-
classes. [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]
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As it can be seen in Eq. (22), we chose small weights for the direc-

tionality and regularity features as compared with the rotation-

invariant texture feature, because the minimum distance between

quantized values of each of those features, which is 0.125 in this

work, is quite greater than the minimum distance between two rota-

tion-invariant texture features that may be even less than 0.01.

Results in Table V verify this point, where the overall accuracy is

higher for settings with smaller weights for the directionality and

regularity features.

From Table V, it can be also seen that the adaptive scoring has

higher performance, because a large number of irrelevant images

are disregarded through the score thresholding of Eq. (22). We can

even expect higher accuracy for the system if a more precise cate-

gorization scheme is performed; however, because such a process

may increase the overall processing time, it is not recommended for

applications whose response times have to be short.

D. Partitioning of Aerial Image. In the last experiment, we

applied our retrieval scheme for partitioning of aerial images.

Remotely sensed data, such as aerial imagery, are an excellent data-

set on which to demonstrate another application potential of the

rotation-invariant texture feature. Here, we used this approach for

the partitioning of such a dataset in this experiment.

For this purpose, we used 220 aerial images of sizes 640 3 640.

For each image, the rotation-invariant texture feature is extracted

for each nonoverlapping 128 3 128 pixel tiles. Selecting one of

tiles as a query, we compute the relevance scores between this tile

and all other tiles in the image using Eq. (19), setting weights wd

and wr to 0.

We then apply a simple agglomerate clustering algorithm to

divide the tiles into two clusters based on their relevance scores.

The tiles that are in the same cluster as the query tile are considered

as a partition. Figure 9 represents an example of such a partitioning

application.

Although the accuracy of this approach is almost the same as the

accuracy of the method that utilizes the homogeneous texture

descriptor of MPEG-7 for similarity search (Manjunath et al.,

2003), its processing time is about half of the other method. Specifi-

cally, if we develop such an application for an online system, that

means feature extraction has to be performed prior to similarity

matching in the online process, the total processing time of the pro-

posed approach becomes less than one-third of the other method,

which is quite significant.

V. CONCLUSION

This article presented an approach for image representation and re-

trieval using NLMDRT whose high efficiency in rotation-invariant

image analysis has been already examined. We first efficiently

extracted three major components of a texture, i.e., orientation,

directionality, and regularity. Experimental results show that the

proposed schemes for extraction of these components outperform

previous works. We then developed a mechanism for image re-

trieval based on these components as well as the rotation-invariant

texture feature. Experiments on a large number of images from

standard datasets exhibit that the proposed approach has high accu-

racy in texture-based image retrieval applications.
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